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Abstract 

The purpose of this research is to investigate   single particle energy levels of O16


 

hyper-nucleus by assuming that single  moves independently in an averaged potential 

well which has the Woods-Saxon form including spin-orbit interaction. The radial 

Schrödinger equation is solved numerically by using Numerov Method. The calculated 

results are compared with other theoretical results. The calculated results of  single 

particle energy levels of O16

  
hyper-nucleus are in good agreement with other theoretical 

results.  
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  Introduction 

The nuclear shell model is one of the most important and useful models of nuclear 

structure. The shell model of the nucleus assumes that the energy structure (energy levels 

of the nucleons) of the nucleus is similar to that of an electron shell in an atom. 

According to this model, the protons and the neutrons are grouped in shell in the nucleus 

similar to extra-nuclear electrons in various shells outside the nucleus. The shells are 

regarded as "filled" when they contain a specific number of protons or neutrons or both. 

The number of nucleons in each shell is limited by Pauli exclusion principle. The shell 

model is sometimes referred to as the independent particle model because it assumes that 

each nucleon moves independently of all the other nucleons and is acted on by an 

averaged nuclear field produced by the action of all the other nucleons. 

Usually, the averaged field is represented by a simple harmonic oscillator 

potential.

 

With this

 

potential the energy levels are EN= (N+3/2) ћ with

 

)2/32nN(  

 where n is

 

the principle quantum number and   is orbital quantum number. When each 

shell is completely filled with nucleons, it is called closed shell.

 

The number of nucleons 

which make closed shell are called magic numbers [1]. The magic numbers are n  2, 8, 

20, 28, 50, 82, 126…. The energy levels corresponding to each value of   for the 

nucleon are represented by a spectroscopic notation similar to the electrons,   0, 1, 2, 3, 

4, 5,… for s, p, d, f, g respectively. 

Spin –Orbit Potential 

It was fairly clear by the 1940 that a central potential could not reproduce all the 

magic numbers. The crucial breakthrough came in 1940 when Maria Goeppert Mayer and 
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Hans Jensen suggested – once again following the lead from atomic physics-that inside 

the nucleus, in addition to the central potential sensed by a nucleon has the form 

     ,S.Lf(r)V(r)VTOT




              

(1)
                                                               

 

where 


L and  


S are the orbital and the spin angular momentum operators for a nucleon, 

and f(r) is an arbitrary function of the radial coordinate [2,3,4]. In atomic physics, a spin-

orbit interaction splits the two degenerate 
2

1
lj   energy level and produces a fine 

structure. The total angular momentum operator is  

             


 SLJ ,              

 (2)                                                                                  

Thus, in a state with definite ,,s and j  values, we have                                                       
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where we have substituted 
2

1
s   for the spin of a nucleon. 

Phenomenological Wood-Saxon Nucleon-Nucleus Potential 

To investigate single-particle energy levels of ordinary nuclei, we emply the 

phenomenological Wood-Saxon nucleon-nucleus potential, which is as follow, 

dr

df(r)

r

1
)S.L(

cm
Vf(r)VV(r)

2

π

so0















       

(4)

                                                              

 

where, f(r) = nuclear density   =   /aRre1
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For
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1
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Numerov Method 

The Shrödinger Radial Equation (SRE) can be written as 

s(r)k(r)u(r)
dr

U(r)d
2

2


                         

(7)
                                                                       

  
If l=0,  V(r)E

2μ
k(r)

2


                                                                                  
 

where k(r) = kernel of the equation s (r)=0 

First we split the r range into N points according to hrr 1nn  
(where h is the step); 

then we write the wavefunction       

      h)u(r)u(ru 1nnn  
, and      

      .h)k(r)k(rk 1nnn  

           
 

Then approximating the second derivative by the three-point difference formula, 

and using it within the second-order differential equation we get the following recursive 

formulas, with a local error 0(h
6
): 

(a) Forward

 

Recursive Relation, 
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(b) Backward Recursive Relation,
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We have calculated the wave function using the backward-forward technique. In 

our calculation, two initial values for each direction are needed for the recursive 

formulas. 

It is also necessary to know the first derivative at the appropriate order and as follows. 
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Bound state energy 

Since both uout(r) and uin(r) satisfy an homogeneous equation, they are set to be 

equal at the rc point. An energy eigenvalue is then signaled by the equality of derivatives 

at this rc point [5,6,7]. At the matching point the eigenfunctions uout(r) and uin(r) and first 

derivatives u′out(r) and u′in(r) must all satisfy the continuity conditions: 

At the matching point
           

   
rcinrcout UU 

                        
(11)
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   
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Splitting this E range into N points according to  

ΔEEE 1nn                         (14)                                                                       

where ΔE= energy step  

Matching eigen functions at the cr point (r)Uout and (r)Uin
 eigen functions 
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Φ(r)Bf(r)U cout      BI(r)(r)Uin    

where cf = scaling factor 

           B = global factor  

 

Normalization 

Using normalization condition, we find (r)Uout and (r)Uin  eigen functions
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By separating the (r)Uout
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Deriving the normalized eigen functions 

)(f  
N

1
(r)Uout rc   

I(r)
N

1
(r)Uin   

where 
N

1
B  , normalization constant. 

 

Results and Discussion 

The  Single particle Energy Levels   in O16

  Hyper-Nucleus 

We have investigated the  single particle energy levels in O16

  nuclei. Numerov 

method can be evaluated both energy eigen values and wave functions simultaneously. 

The Harmonic Oscillator wavefunction of O16

8
for various states are shown in Figure 1 ( a 

), ( b ) and ( c ). 

 

Figure 1 (a), (b), (c) The Harmonic Oscillator wavefunction of O16

8
for various states 

We have also calculated the neutron single particle energy levels of O16

8
 for the 

Woods-Saxon potential including spin orbit interaction, which cannot be solved 

analytically. The calculated eigenvalues for the Woods-Saxon potential are listed in table 

1. 

Table 1. The neutron single energy levels in O16

8
(MeV) for Woods-Saxon potential

 
          

 

State 

without 

L.S 

with L.S 

J=l+1/2 J=l-1/2 

0S -32.49 -18.83 -32.49 

0P -17.74 -18.83 -15.58 

 

And then, we have calculated  single particle energy levels in O16

  hypernucleus. 

O16

  hypernucleus contains single  particle and 15 nucleons. In this research, we 

Fig. 1 (a) Fig. 1 (b) Fig. 1 (c) 
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considered single  particle moves freely in an average field which is obtained from 

interaction between 15 nucleons and  according to shell model. Therefore we have 

calculated - single particle energy level in O16

  hypernucleus for Woods-Saxon potential 

with spin-orbit coupling. The calculated eigenvalues of  single for the Woods-Saxon 

potential are listed in Table 2.  The calculated results are compared with other theoretical 

results [8] in table 3. Our calculated results of  single particle energy levels are in good 

agreement with other theoretical results.  

Table 2. The  single particle energy levels in O16


 (MeV) for Woods-Saxon potential           

 

State 

without 

L.S 

with L.S 

J=l+1/2 J=l-1/2 

0S -13.05 -13.05 -13.05 

0P -2.34 -2.76 -1.54 

 Table 3. Comparison of  our calculate results of O16

  with other theoretical results  

 

State 

 

Our 

Calculated 

Results 

( MeV ) 

Other 

Theoretical 

Results (MeV) 

[ 8 ] 

0s - 13.05 - 13.0  

0p3/2 - 2.76 - 2.7  

0p1/2 -1.54 -1.5 

 

 

Conclusion 

The radial Schrödinger equation is solved numerically by using Numerov Method. 

We have calculated  single energy levels of O16


 hyper-nucleus. The calculated results 

are compared with other theoretical results. The calculated results of  single particle 

energy levels are in good agreement with other theoretical results. 
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