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Solving Integral Curves and its Applications 

 

Khin San Aye

 

 

Abstract 

In this paper we study methods for finding integral curves and surfaces of vector fields. And 

then we express the applications to plasma physics and to solenoidal vector fields. 

 

Integral Curves of Vector Fields 

 Let (x, y,z) ( (x, y,z), (x, y,z), (x, y,z))V P Q R  be a vector field defined in some 

domain of 3R . We will deal only with the vector fields V in domains   in which the 

following two conditions are satisfied:  

(a) V is nonvanishing in  ; i. e., the component functions P, Q, R of  V do not vanish 

simultaneously at any point of  , 

(b) 1, , C ( ) P Q R . 

 

Definition 

 A curve C in   is an integral curve of the vector field V if V is tangent to C at each of 

its points. 

With the vector field (P,Q,R)V  we associate the system of ordinary differential 

equations,  

 
dx

(x, y,z)
dt

 P , 
dy

(x, y,z)
dt

Q , 
dz

(x, y,z)
dt

 R .              (1) 

A solution (x(t), y(t),z(t))  of (1), defined for t in some interval I, may be regarded as a 

curve in  . We will call this curve a solution curve of the system (1). Obviously, every 

solution curve of the system (1) is an integral curve of the vector field V. Conversely, it can be 

shown, that if C is an integral curve of V, then there is a parametric representation  

 x x(t), y y(t) , z z(t) ; t I , 

of C, such that (x(t), y(t),z(t))  is a solution of the system of equations (1). Thus, every 

integral curve of V, if parameterized appropriately, is a solution curve of the associated system 

of equations (1).  

 The integral curves of simple vector fields, such as those given by (1,0,0)V  and 

(x, y,z)V , can sometimes be found by geometrical intuition. However, for more 

complicated vector fields this is not always possible. In any case, the integral curves of a vector 
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field ( , , )V P Q R can be found by considering these curves as solution curves of the 

associated system of equations (1) and by solving this system. 

 Since the right hand sides of the system (1) do not depend on t, it is possible to 

eliminate t completely and consider any two of the variables x, y, z as functions of the third. If, 

for example, 0P , then y and z may be considered as functions of the independent variable x, 

and the system (1) may be written in form 

                      
dy Q

,
dx P

             
dz R

dx P
 .       (2) 

Similarly, if 0Q ,or 0R , the system (1) may be written in the form  

                       
dx

,
dy


P

Q
            

dz

dy


R

Q
       (3) 

or 

                      
dx

,
dz


P

R
            

dy

dz


Q

R
,       (4) 

respectively. In order to avoid distinguishing between dependent and independent variables, it 

is customary to write the equivalent systems (2) - (4) in the form 

                      
dx dy dz

 
P Q R

.             (5)  

 

Definition  

Two functions 1u and 2u in 1C ( )  which satisfy condition 

1 2grad u (x, y,z) grad u (x, y,z) 0,  (x, y,z) ,  will be called functionally independent in 

 . 

 

Definition  

A function u in 1C ( )  is called a first integral of the vector field ( , , )V P Q R  (or of 

its associated system dx/P = dy/Q = dz/R) in  , if at each point of  , V is orthogonal to grad 

u, i.e., 

                       
u u u

0
x y z

  
  

  
P Q R      in  .              (6) 

               Equation (6) is a partial differential equation in unknown function u of three 

independent variables x, y, z. According to Definition 1.3, any solution of the p.d.e. (6) is a 

first integral of V. 
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Some Examples 

 (i) Let (1,0,0)V  be the vector field and let 3R . A first integral of V is a solution of 

the equation  

                                                   xu 0 .       (7) 

Any function of y and z only is a solution of this equation. For example, 

                                      1u y ,            2u z           

are two solutions which are obviously functionally independent. The integral curves of  V are 

described by the equations  

                                       1y c ,          2z c ,       (8) 

and are straight lines parallel to the x-axis (see Fig. 1). The functions y z  and y ze   are also 

functionally independent first integrals, and the integral curves of V are also described by the 

equations  

                                       1y z c         y z

2e c  .      (9) 

Of course, different values of 1c  and 2c  must be used in (7) and (8) in order to get the same 

integral curve of V. 
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(ii) Let V be the vector field (x, y,z)V  and let   be the octant x 0,  y 0,  z 0 . A first 

integral of V is a solution of the equation  

x y zxu yu zu 0.                    (10)  

It can be found that the functions 

  1

y
u (x, y,z) ,

x
  2

z
u (x, y,z)

x
  

are first integrals of V in  . Moreover, they are functionally independent in   since they 

satisfy 1 2grad u (x, y,z) grad u (x, y,z) 0  . Therefore, the integral curves of V in   are 

described by the equations 

1

y
c ,

x
    2

z
c .

x
                                       (11) 

They are rays emanating from the origin (see Fig. 2) and a parametric representation of them is 

  1 2x t, y c t, z c t; t 0.     

It is easy to check by direct computation that any function of 1u and (or) 2u  is also a first 

integral of V. 
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(iii) Let (y, x,0) V be the vector field and let   be 3R minus the z-axis. A first integral 

of V is a solution of the equation  

  x yyu xu 0.   

 

It can be found that the functions.  

  2 2

1u (x, y,z) x y ,    2u (x, y,z) z  

are two functionally independent first integrals of V. Therefore, the integral curves of V in   

are given by  

2 2

1x y c ,      2z c .                                      (12) 

Equations (12) describe circles parallel to the (x, y)-plane and centered on the z-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 

A surface S in a domain  of 3R is an integral surface of the vector V if S is a level 

surface of a first integral of V; i.e., S is described by an equation of the form  

  u(x, y,z) c                   (13) 

where u is a solution of the equation 

x y zu u u 0  P Q R                  (14) 

in   such that grad u 0  in  . 

(y, x,0) V  

V 

z 

x 

y 

Figure 3 
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 Example 

 We consider the vector field V (1,0,0). The corresponding equation (14) is  

xu 0                    (15) 

and the associated system of equations is 

dx dy dz
.

1 0 0
                    (16) 

The integral curves of V are given by 

1 2y c , z c   

and they are lines parallel to the x-axis. Suppose first that the curve C lies on the x 0  plane 

and is given by the equations   

f (y,z) 0, x 0.                    (17) 

Then the cylindrical surface S given by  

f (y,z) 0                    (18) 

is the integral surface of V containing the curve C. Next, suppose that C is an integral curve of 

V given by 

0 0y y , z z .                    (19) 

 

 

 

 

 

 

 

 

 

 

 

 

Let C  be any curve on the x 0  plane passing through the point 0 0(0, y ,z ) . Then C is given 

by equations of the form (17) with the condition 0 0f (y ,z ) 0 . It can be seen that the surface 

Sgiven by equation (18) is an integral surface of V containing the curve (19). In fact, any 

surface given by an equation of the form (18), with the function f subject only to the condition 

0 0f (y ,z ) 0 , is an integral surface of V containing the curve (19). 
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V 
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Application to Plasma Physics and to Solenoidal Vector Fields 

Application to Plasma Physics  

 The basic equation of plasma physics is known as the Boltzmann equation which is 

used in the study of a problem known as a static boundary-layer problem, 

2 1
1

1 2

f v d dφ f v d f
mv e( ) e 0

x c dx dx v c dx v

    
   

  
.             (21) 

In equation (21) f is the unknown function of the three independent variables 1x, v  and 

2v . The functions   and   are given functions of the variable x only, while m, e and c are 

constants. The partial differential equation (21) is an equation of the form  

  1 2

121

dx dv dv
.

v dv d dmv
ee

c dxc dx dx

 
  

 
 

               (22) 

The equation of the first and third ratios (after canceling 1v ) is an o.d.e. in x and 2v which 

yields the first integral 

               1 2

e
f mv x

c
   .                                                                                

Multiplying the numerators and denominators of the second ratio in (22) by 12v  and of the 

third ratio by 22v and adding the numerators and denominators of the resulting ratios yields the 

ratio 

                 
2 2

1 2

1

d(v v )

d
2ev

dx






                  (23) 

which is also equal to the ratios (22). The equality of the ratio (23) with the first ratio in (22) 

(after canceling 1v ) is an o.d.e. in the variables x and  2 2

1 2v v  which yields the first integral 

                                   2 2

2 1 2

1
f m v v e x

2
    .                      (24) 

Obviously, 1f and 2f are functionally independent and, the general solution of (21) is given by 

                                       2 2

1 1 2 2 1 2

e 1
f x , v , v mv x , m v v e x

c 2

 
      

 
F ,    (25)                          

where  1 2f , fF is an arbitrary function of two variables. The first integrals 1f and 2f have 

physical meaning; 2f is the energy of a particle of mass m and 1f is its canonical momentum. 

Moreover, the pair of equations 

                                1 1 2 2f c ,f c   

determine the trajectory of the particle. 
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Solenoid Vector Fields 

Let V= (P, Q, R)be a vector field defined in some domain   in 3R ,with P, Q, R, 

belonging to 1C ( ) .The divergence of V. written div V, is the function defined in   by 

 div .
x y z

  
  
  

P Q R
V  

V is said to be solenoidal in   if div 0 in . V  

The curl of V, written curl V, is the vector field defined in   by  

  curl , , .
y z z x x y

      
    

      

R Q P R Q P
V  

The following theorem finds frequent application in many areas of engineering an physics. 

 

Theorem  

 Let ( , , )V P Q R  be a nonvanishing vector field defined in a domain   of 3R , with 

, ,P Q R  in 1C ( ) . If V is solenoidal in  , then given any point 0 0 0(x , y ,z ) in  , there is a 

neighborhood 0  of 0 0 0(x , y ,z )  and  a vector field W with 1C  components defined in 0  

such that  

0(x, y,z) curl (x, y,z), (x, y,z) . V W               (26) 

 The vector field W is often called a vector potential for given field V. Before giving the 

proof, we will list some identities from vector calculus which will be needed in the course of 

the proof. Let f be a 1C  function, and let u, v be 1C  vector fields, all being defined in a 

common domain  .  

Then  

div (f ) grad f f div u u + u,   (27) 

div( ) = (curl  ) - (curl  ) ,  u v u v v u   (28) 

2curl(gradf ) = 0 (assume f C here),   (29) 

curl(f ) = (grad f ) f curl . u u u    (30) 

Proof: 

Let 1 2u ,u  be two first integrals of V which are functionally independent in some 

neighborhood 1 of  0 0 0x , y ,z . At each point of 1 , the vector field V is parallel to 

1 2gradu gradu , so that we can write 

                     1 2(x, y,z) (x, y,z)(gradu gradu ) V                                      (31)        
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for some function  defined in 1 .The function   is 1C since  

                       1 2

2

1 2

(grad u grad u )
,

grad u grad u

 




V
 

and 1 2u ,u are actually 2C . This smoothness of 1u and 2u , which we have not used before, 

follows from the manner in which 1u and 2u are obtained from the system of ordinary 

differential equations (5). Since V is solenoidal in 1 ,it follows by applying identities (27), 

(28), and (29) that 

     
 

 

 

1 2

1 2

2 1

1 2

0 div

curlgrad u grad u
grad (grad u grad u )

curlgrad u grad u

grad grad u grad u .



 
       

   

   

V

   (32) 

       Equation (32) shows that grad is perpendicular to 1 2gradu grad u at each point of 1 , 

and so is perpendicular to V at each point of 1 , i.e. 

                        10 in .
x y z

  
   

  
P Q R       (33) 

Thus   is a solution of the partial differential equation and we can apply the results of that 

section to express   as a function of 1u and 2u . Explicitly, that there is a neighborhood 0  of 

 0 0 0x , y ,z with 0 1    and a 1C function  1 2F u ,u  such that 

                  1 2 0x, y,z u x, y,z ,u x, y,z , x, y,z .  F      (35) 

Now, let  1 2u ,uG  be a function such that  

                  1 2 1 2

1

u ,u u ,u .
u





G
F        (36) 

From (31),(35) and (36) we see that in 0  

               
1 2

1

2

grad u grad u
u

grad grad u .

 
  

 

 

G
V

G

  (37) 

In the last line of (37) we used the identities 

                         1 2 1 2 2 2

1 2

grad u ,u grad u grad u , grad u grad u 0.
u u

 
   
 

G G
G    

To complete the proof we need only observe that (37) can be written in the form 

                          2curl grad uV G  
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because of identities (29) and (30). If we set 

                          2grad uW G                                                                          (38) 

then 

                           0curl in . V W  

 

Example    

Let  y, x,0 V be the vector field with  being 3R minus the z-axis. V is clearly 

solenoidal in . Two functionally independents first integrals of V were found in Example (iii) 

to be 

                             2 2

1 2u x y , u z.    

 

By calculating show that 

                          
 1 2grad u grad u 2 y, x,0

2 ,

  

 V
   

so that the  proportionality factor  in this case is simply 

                              
1

2
   

The function  1 2F u ,u in (35) is 

                                           1 2

1
u ,u ,

2
F   

and for  1 2u ,uG we can take the function 1(1/ 2)u .  It follows from (38) that 

                                        

1 2

2 2

2 2

1
u grad u

2

1
(x y )grad z

2

1
(0,0, (x y )).

2



 

 

W

 

Thus, for all points of we have 

                                             2 21
curl(0,0, (x y )).

2
 V   
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Abstract 

There are many different ways to colors a graph, each with different applications. In this paper, 

we discuss vertex coloring, and find the least number of colors needed for a coloring of the 

given graph. 

  

Introduction 

 Each map in the plane can be represented by a graph. To set up this correspondence, 

each region of the map is represented by a vertex. Edges connect two vertices if the regions 

represented by these vertices have a common border. Two regions that touch at only one point 

are not considered adjacent. The resulting graph is called the dual graph of the map. By the 

way in which dual graphs of maps are constructed, it is clear that any map in the plane has a 

planar dual graph. 

 The problem of coloring the regions of the map is equivalent to the problem of coloring 

the vertices of the dual graph so that no two adjacent vertices in this graph have the same color. 

We now define the coloring of graphs. 
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Terminology and Notations 

 A graph G (V, E)  consists of a finite nonempty set V, called the set of vertices and a 

set E of unordered pair of vertices, called the set of edges. Two vertices which are incident 

with a common edge are adjacent, as are two edges which are incident with a common vertex. 

An edge with identical ends is called a loop. All linear having the same pair of end points are 

called parallel edges. A graph is simple if it has no loops and no parallel edges. The degree 

d(v) of a vertex v in G is the number of edges of G incident with v, each loop counting as two 

edges. A walk in G is a finite non-null sequence 0 1 1 2 k kW v , e ,v , e , , e , v ,  whose terms are 

alternately vertices and edges. A trail is a walk with no repeated edge. A path is a walk with 

no repeated vertex. A cycle is a closed trail. A graph is said to be acyclic if it does not contain 

any cycles. Let e an edge of a graph G. If G e  has more components than G, then e is a 

bridge of G. Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. 

A connected graph without cycles is a tree.  

 The complete graph on n vertices, for n 1 , which we denote nK , is a graph with n 

vertices an edge joining every pair of distinct vertices. A graph G (V , E )    is a subgraph of 

a graph G (V, E)  if  V V   and E E  . 

Planar Graph 

 A graph G is called a planar graph if G can be drawn in the plane without any two of 

its edges crossing. 

 

 

 

 

 

 

  

 

  

 

A coloring of a simple graph is the assignment of a color to each vertex of the so that 

no two adjacent vertices are assigned the same color. A chromatic number of a graph is the 

least number of colors needed for a coloring of this graph. A vertex coloring of a graph 

G (V, E)  is a map c : V S  such that c(v) c(w)  whenever v and w are adjacent. The 

element of the set S are called the available colors. If each colors used in one of k given colors, 

then we refer to the coloring as a k-coloring. In a k-coloring, we may then assume that it is the 

colors 1, 2,…, k that are being used. This k is the chromatic number of G; it is denoted by 

(G) . A graph G with (G) k   is called k-chromatic; if (G) k  , we call G is k-colorable. 

 

 

 

Figure 3 The region of the planar representation of a graph 

5r  

4r  

3r  
2r  

1r  
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 Theorem 

 If H is a subgraph of a graph G, then (H) (G)   . 

Proof 

 Suppose that (G) k  . Then there exists a k-coloring e of G. Since c assigns distinct 

colors to every two adjacent vertices of G, the coloring c also assigns distinct colors to every 

two adjacent vertices of H. Therefore, H is k-colorable and so (H) k (G)    . 

 Theorem 

 If G is a graph whose largest vertex-degree is  , then G is ( 1) -colorable. 

Proof  

We will prove by induction on the number of vertices of G. Suppose that G be a graph with n 

vertices, then if we delete any vertex v (and the edges incident to it). Then, G remains with 

n 1  vertices whose largest vertex-degree is at most  . By our induction hypothesis, this 

graph is ( 1) -colorable; a ( 1) -coloring for G is, then, obtained by coloring v with a 

different color from the (at most  ) vertices adjacent to v. 

Theorem 

 Let G be a connected planar simple graph with e edges and v vertices. Let r be the 

number of regions in a planar representation of G. Then, v e r 2   . 

Proof 

 We proceed by induction on the edge e of a connected plane graph. There is only one 

connected graph of „0‟ edges, namely 1K . In this case, v 1, e 0,   and r 1 . Since 

v e r 2   , the base case of the induction holds. 

 Assume for a positive integer v that if H is a connected plane graph of v  vertices and 

e  edge, where v v   such that there are r  regions, then v e r 2     . Let G be a connected 

plane graph of v vertices and e edges with r regions. We consider two cases. 
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Figure 4 Coloring of a graph H 
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Case 1.    G is a tree. In this case, e v 1   and r 1 . Thus, v e r v (v 1) 1 2       ,  

     producting the desired result. 

Case 2.    G is not a tree. Since G is connected and is not a tree, G contains an edge e that is 

 not a bridge. In G, the edge e is on the boundaries of two regions. So in G e  these 

 two regions merge into a single region. Since G e  has v vertices, e 1  edges, and 

 r 1  regions and e 1 e  , it follows by the induction hypothesis that 

 v (e 1) (r 1) 2      and so v e r 2   . 

 

Theorem 

 If G is a planar graph with vertices v 3  and e edges, then e 3v 6  . 

Proof 

 Since every graph with vertices v 3 , the inequality holds for v 3 . Assume that 

v 4 . Furthermore, assume that the planar graphs under consideration are connected, for  

otherwise edges can be added to produced a connected graph. Suppose that G is a connected 

planar graph with v 4  and e edges and that there is a given planar embedding of G, resulting 

in r regions. By Theorem 3.3, v e r 2   . Let 1 2 rR , R , ,R  be the regions of G and suppose 

that we denote the number of edges on the boundary of iR (1 i r)   by ie . Then ie 3 . Since 

each edge of G is on the boundary of at most two regions of G, it follows that   

   
r

i

i 1

3r e 2e


  .  

Hence, 6 3v 3e 3r 3v 3e 2e 3v e         and e 3v 6  . 

Lemma 

 If G is a planar graph, then G contains a vertex whose degree is at most 5. 

Proof 

 Suppose that the degree of every vertex of G is at least 6. then the sum of the degrees of 

vertices would be at least 6v, where v is the number of vertices in G. Since the sum of all 

degrees in G is 2r, where e is the number of edges of G; thus 2e 6v  (or) e 3v . But this 

contradicts the theorem, which states that e 3v 6   for any planar graph with at least two 

edges. Thus, G must contain a vertex of degree at most 5. 

Theorem 

 Every planar graph is 6-colorable. 

Proof 

 We prove the theorem by induction on the number of vertices, the result being trivial 

for planar graphs with fewer than seven vertices. Suppose then that G is a planar graph with n 

vertices, and that all planar graphs with n 1  vertices are 6-colorable. Without loss of 

generality G can be assumed to be a simple graph, and so, by lemma 3.5, contains a vertex v 

whose degree is at most five, if we delete v, then the graph which remains has n 1  vertices 
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and it has 6-colorable. A 6-coloring for G is the obtained by coloring v with a different color 

from the (at most five) vertices adjacent to v. 

Example 

 An exam schedule needs to be set up for the following courses: Calculus, Data 

structures, Discrete mathematics, European history, French, Physics, Psychology, and 

Shakespeare. The following pairs of courses (and only these) have students in common: 

Calculus and French (that is, there is at least one student who is taking both Calculus and 

French), Calculus and Psychology, Data structures and European history, Discrete mathematics 

and Physics, Discrete mathematics and Shakespeare, European history and French, European 

history and Shakespeare, French and Psychology, and Physics and Psychology. The exams 

must be scheduled in such a way that no student is required to take two exams on the same day. 

The problem is to determine the minimum number of examination days necessary, and to 

schedule the examinations. 

 This schedule problem can be solved using a graph model, with vertices representing 

courses and with an edge between two vertices if there is a common student in the courses they 

represent. Each time slot for an exam is represented by a different color. A scheduling of the 

exams corresponds to a coloring of the associated graph. 

Let  Ca    Calculus, 

 Da   Data structures, 

 Dis   Discrete mathematics, 

 Euro   European history, 

 Fre   French, 

 Phy   Physics, 

 Psy   Psychology, 

 Sha   Shakespeare. 

 

 

 

 

 

 

  

  

 

 

 

Da 

Fre 

Eur

o 

Sha 

Dis 

Phy 

Psy 

Ca 

Figure 5 The graph representing the scheduling of exams 
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Since the chromatic number of this graph is 3, three time slots are needed. A coloring 

of the graph using three colors and the associated schedule are shown in      Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Time Period   Courses 

                I    Fre, Phy, Da 

                   II    Ca, Dis, Euro 

                  III    Sha, Psy  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Using a coloring to schedule for exams 
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Application of Number Theory in Cryptography 

 

Kyaw San Lin

 

 

Abstract 

In this paper, some basic definitions, notations and concepts of number theory are expressed. 

Then, congruent modulo relation, equivalence class and the set of equivalence classes 
nZ  for 

integer n are defined and the relation between existence of multiplicative inverse of element in 

nZ  and being relatively prime with n is discussed. Moreover some definitions and 

terminologies concerned with cryptology are stated. Finally encryption and decryption of 

messages are illustrated with examples. 

 

Introduction 

 Cryptography was concerned initially with providing secrecy for written messages. 

Cryptography depends on number theory and abstract algebra. In this paper, we shall introduce 

some basic concepts and techniques of cryptography. Messages can be encrypted and 

decrypted by using privative key as well as public key. But we shall state only privative key 

cryptography in this paper.  

 

Some Results from Number Theory 

Definitions 

 A nonzero integer a is said to divide an integer b if b ac  for some integer c and we 

express it as a | b. 

 The following results can be obtained (i) a | b, b | c, then a | c, 

(ii) a | b, b | c, then a | b c,  (iii) a | 0, a | a. 

 An integer d >0 is called greatest common divisor (gcd) of two nonzero integers a, b if 

(i) d | a, d | b and (ii) if c | a, c | b then c | d. We write d gcd(a,b). If gcd(a,b) 1,  then a and b 

are said to be relatively prime or co-prime. An integer p >1 is called a prime number if 1 

and p are the only divisors of p. Let a, b, n, (n >0) be integers. We say that a is congruent to b 

modulo n if n divides a b  and write a b(modn).  An equivalence relation on a set X is a 

relation R X X   such that 

  (i) (x,x) R  for all x X  (reflexive property): 

 (ii) (x, y) R  implies (y,x) R  (symmetric property): 

 (iii) (x, y) R  and (y,z) R  imply (x,z) R  (transitive property). 

                                                 

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Given an equivalence relation R on a set X, we usually write x y  instead of (x, y) R.  A 

partition P of a set X is a collection of nonempty sets 1 2X ,X ,...  such that 
i jX X   for 

kk
i j and X X.   Let  be an equivalence relation on a set X and let x X.   

Then    x y X : y x   is called the equivalence class of x.The integers mod n also 

partition Z into n different equivalence classes: we will denote the set of these equivalence 

classes by nZ .
 

 

Theorem 

 Let nZ  be the set of equivalence classes of the integers mod n and na,b Z .  Let a be a 

nonzero integer. Then, gcd(a,n) 1  if and only if there exists a multiplicative inverse b for 

a(mod n); that is, a nonzero integer b such that ab 1(modn).  

Proof: See [2].    

Introduction to Cryptography 

 Cryptography is the study of sending and receiving secret messages. The aim of 

cryptography is to send messages across a channel so only the intended recipient of the 

message can read it. The message to be sent is called the plaintext (M) message. The disguised 

message is called the ciphertext (C) . A cryptosystem, or cipher, has two parts: encryption, 

the process of transforming a plaintext message to a ciphertext message, and decryption, the 

reverse transformation of changing a ciphertext message into a plaintext message. 

 There are many different families of cryptosystems, each distinguished by a particular 

encryption algorithm. Cryptosystems in a specified cryptographic family are distinguished 

from one another by a parameter to the encryption function called a key. A classical 

cryptosystem has a single key, which must be kept secret, known only to the sender and the 

receiver of the message.  

Privative Key Cryptography 

 In single or privative key cryptosystems the same key is used for both encrypting and 

decrypting messages. To encrypt a plaintext message, we apply to the message some function 

which is kept secret, say f. This function will yield an encrypted message. Given the encrypted 

form of the message, we can recover the original message by applying the inverse  

transformation 1f .  

(I) Monographic (Character) Ciphers 

 Cryptosystems are based on transforming each letter of plaintext into a different letter to 

produce the ciphertext. Such ciphers called character, substitution or monographic ciphers, 

since each letter is shifted individually to another letter by a substitution. First of all, let us 

define the numerical equivalents, as in Table 1, of the 26 English capital letters, since our 

operations will be on the numerical equivalents of letters, rather than the letters themselves. 



Banmaw University Research Journal 2020, Vol. 11, No.1 

 
196 

 

Table 1. 

Numerical equivalents of English capital letters 

 

 (i) Caesar cipher: A simple Caesar cipher uses the following substitution 

transformations: 3f m 3(mod26),  0 m 25,     and 1

3f c 3(mod26),  0 c 26      where 

m M and c C,  and 3 is the key for both encryption and decryption. 

 (ii) Shift transformations: Slightly more general transformations are the following so 

called shift transformations: 

kf m k(mod26),  0 m,k 25,    1

kf c k(mod 26),   0 c,k 26.   

 (iii) Affine transformations: More general transformations are the following so called 

affine transformations: (a,b)f am b(mod 26),    where the key a,b Z,  0 a,b,m 26    and 

gcd(a,26) 1, together with 1 1

(a,b)f a (c b)(mod 26),     where 1a  is the multiplicative 

inverse of a modulo 26. 

Example 

 By using the following affine transformations (7,21)f 7m 21(mod 26)   and 

1 1

(7,21)f 7 (c 21)(mod 26),    we can encrypt the plaintext message SECURITY and decrypt 

the ciphertext message VLXIJH as follows.  

 To encrypt the message SECURITY, we have 

    S 18,  (7 18+21)mod26 17  S R,    

    E 4,  (7 4+21)mod26 23  E X,    

    C 2,  (7 2+21)mod26 9  C J,    

    U 20,  (7 20+21)mod26 5  U F,    

    R 17,  (7 17+21)mod26 10  R K,    

    I 8,  (7 8+21)mod26 25  I Z,    

    T 19,  (7 19+21)mod26 24  T Y,    

    Y 24,  (7 24+21)mod26 7  Y H.    
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 So the ciphertext message of the message SECURITY is RXJFKZYH. 

 To decrypt the message VLXIJH, we have 

    
1V 21,  [7 (21 21)]mod26 0  V A,     

    
1L 11,  [7 (11 21)]mod26 6  L G,     

    
1X 23,  [7 (23 21)]mod26 4  X E,     

    
1I 8,  [7 (8 21)]mod26 13  I N,     

    
1J 9,  [7 (9 21)]mod26 2  J C,     

    
1H 7,  [7 (7 21)]mod26 24  H Y.     

 Therefore the plaintext message for the message VLXIJH is AGENCY. 

(II) Polygraphic (Block) Ciphers 

 Monographic ciphers can be made more secure by splitting the plaintext into groups of 

letters (rather than a single letter), and then performing the encryption and decryption on these 

groups of letters. This block technique is called block ciphering. Block cipher is also called a 

polygraphic cipher. Block ciphers may be described as follows: 

 (i) Split the message M into blocks of n-letters (when n 2  it is called a digraphic 

cipher) 1 2 jM ,M ,...,M ;  each block iM  for 1 i j   is a block consisting of n letters. 

 (ii) Translate the letters into their numerical equivalents and form the ciphertext: 

  i iC AM B(mod26),  i 1,2,..., j    where (A, B) is the key, A is an invertible n n  

matric with T T

1 2 n 1 2 ngcd(det(A),26) 1,B (B ,B ,...,B ) ,C (c ,c ,...,c )    and 

T

i 1 2 nM (m ,m ,...,m ) .  For simplicity, we just consider i iC AM (mod 26).   

 (iii) For decryption, we perform 1

i iM A (C B)(mod 26),   where 1A  is the inverse 

matric of A. Again, for simplicity, we just consider 1

i iM A C (mod 26).   

Example 

 Let M = YOUR PIN NO IS FOUR ONE TWO SIX be the plaintext and n 3.  Let also 

the encryption matrix be 

11 2 19

A 5 23 25 .

20 7 17

 
 

  
 
 

 

Then, the encryption and decryption of the message can be described as follows. 
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 (i) Split the message M into blocks of 3-letters and translate these letters into their 

numerical equivalents: 

Y O U R P I N N O I S F

                                         

24 14 20 17 15 8 13 13 14 8 18 5

 

O U R O N E T W O S I X

                                         

14 20 17 14 13 4 19 22 14 18 8 23

 

            (ii) Encrypt these eight blocks in the following way: 

1 2 3 4

24 22 17 5 13 19 8 11

C A 14 6 ,    C A 15 6 ,   C A 13 12 ,   C A 18 7 ,

20 8 8 9 14 17 5 7

               
               

                      
               
               

 

5 6 7 8

14 23 14 22 19 25 18 1

C A 20 19 ,    C A 13 1 ,   C A 22 15 ,   C A 8 17 .

17 7 4 23 14 18 23 1

               
               

                      
               
               

 

 (iii) Translating these into letters, we get the ciphertext C: 

22 6 8 5 6 9 19 12 17 11 7 7

                                         

W G I F G J T M R L H H

 

23 19 7 22 1 23 25 15 18 1 17 1

                                         

X T H W B X Z P S B R B

 

 Therefore, the ciphertext message (C) of the given plaintext message is WGIF GJT MR 

LH HXTH WBX ZPS BRB. 

 (iv) To recover the message M from C, we first compute 1A  modulo 26: 

1

1

11 2 19 10 23 7

A 5 23 25 15 9 22

20 7 17 5 9 21





   
   

    
   
   
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And then perform 1

i iM A C (mod 26)  as follows: 

1 1 1 1

1 2 3 4

22 24 5 17 19 13 11 8

M A 6 14 ,    M A 6 15 ,   M A 12 13 ,   M A 7 18 ,

8 20 9 8 17 14 7 5

   

               
               

                      
               
               

 

1 1 1 1

5 6 7 8

23 14 22 14 25 19 1 18

M A 19 20 ,    M A 1 13 ,   M A 15 22 ,   M A 17 8 .

7 17 23 4 18 14 1 23

   

               
               

                      
               
               

 

 (v) Translating these into letters, we get the plaintext M: 

24 14 20 17 15 8 13 13 14 8 18 5

                                         

Y O U R P I N N O I S F

  

14 20 17 14 13 4 19 22 14 18 8 23

                                         

O U R O N E T W O S I X

   

So, the original plaintext message YOUR PIN NO IS FOUR ONE TWO SIX can be obtained. 
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The Dual of an Operator Spaces 
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1
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Abstract 

In this paper, we introduce the operator spaces and present some notions of operator spaces. 

And then, we study the concept of a dual of an operator spaces. Finally, we discuss some 

fundamental properties of dual operator spaces. 

 

Introduction 

 The dual space is an important concept in the study of functional analysis.And so, one 

of the interesting areas of operator spaces is duality. Now, in this paper we present a dual of 

operator space which is again an operator space and discuss the operator space versions of 

usual Banach duality of subspaces and quotients. 

 

Operator Spaces 

 An operator space is simply a Banach space together with an isometric linear 

embedding into the space B(H) of all bounded operators on a Hilbert space H. Now, in this 

section, we present some basic notions and examples of operator spaces. In what follows 

unless otherwise stated, V denote a vector space over the real field  or complex field  and 

 denotes the set of all positive integers. Firstly, we recall some matrix notions which is 

important tools for operator space. 

 

Definition 

 For positive integers m,nm,n,M (V)  denotes the vector space of all m by n matrices 

with entries in V. Then m,nM (V)  is called a matrix space of a vector space V. In particular 

m n,nM (V) M (V)  is called thn  level matrix space of V. When V ,  we simply write m,nM  for 

𝑀𝑚,𝑛(ℂ) and nM  for 𝑀𝑛(ℂ). For n 1,  we identify m,nM (V) V.  

 

Definition 

 Let 
ij m,nv v M (V)     and  kl p,qv v M (V).    Then the direct sum v v  is 

defined by  
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ij

m p,n q

kl

v 0
v v M (V).

0 v
 

 
    

 
  

We also define 

   m,n p,q m,n p,qM (V) M (V) v v : v M (V),v M (V) .       

 

Definition 

 Let V be an algebra and  ij m,n kl p,qv v M (V),v v M (V).        Then the Kronecker 

Product v v   is defined by 

  
ij ij kl mp,nqv v v v v v M (V).             

We also define 

   m,n p,q m,n p,qM (V) M (V) v v : v M (V),v M (V) .       

Definition 

 Let V be a vector space. A matrix norm on V is a family of norm nn
: M (V) ,   

one on each matrix level n nM (V) M V   for n   which satisfies: 

1(R )  v v ,       

 2(R ) v w max v , w ,   for all n m,n n,mv M (V), M , M    and mw M (V).   

 

Definition 

 Let V be a vector space. For each nn ,M (V) together with the matrix norm is called 

an operator space. 

 

Examples 

(i)  The space of all bounded linear operator on a Hilbert space H, B(H),  is an operator 

space. 

(ii) Any C*-algebra A is an operator space. 

 

Definition 

 Given operator spaces V and W and a linear map : V W,   there are corresponding 

linear maps n n n: M (V) M (W)   defined by 

  n ij ij([v ]) (v ) ,      for all ij nv M (V).      
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 The completely bounded norm of   is defined by  ncb
sup : n ,    which 

may be infinite. 

   is called a completely bounded map if 
cb

.     

If Y is another operator space and : W Y  is completely bounded, then the 

composition : V Y    

is completely bounded and we have 

   
cb cb cb

.      

Definition 

 Let V and W be operator spaces and : V W   be a linear map.  is called a 

complete contraction if 
cb

1.   We define   to be a complete isometry if each mapping 

n n n: M (V) M (W)   is an isometry.   is called a complete quotient mapping if each n  is 

a quotient mapping, that is, for each ny M (W),   

   1

ny inf x : x (y)   for each n .   

 We define   to be a complete isomorphism if it is a linear isomorphism and 

1

cb cb
,  .      We say that the operator spaces V and W are completely isometric 

(completely isomorphic) if there is a complete isometry (complete isomorphism) from V     

onto W. 

  

The following  is Ruan‟s Theorem whose proof can be found in [1]. 

Theorem(Ruan) 

 Suppose that V is a vector space and that for each n   we are given a norm 
n
 on 

nM (V).   Then V is completely isometrically isomorphic to a linear subspace of B(H)  if and 

only if these norms satisfy conditions 1(R )  and 2(R ).  

 In [1] Pisier introduced the operator space version of the Banach-Mazur distance, 

which is defined as follows: 

Definition 

 If V and W are operator spaces and V is completely isomorphic to W, then we define 

the Banach-Mazur distance 

   1

cb cb cb
d (V,W) inf t , t ,   

where the infimum is taken over all completely bounded isomorphisms t : V W,  and define 

cbd (V,W)    if V is not completely isomorphic to W. 
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We note that if V and W are completely isometric, then 
cbd (V,W) 1.   

Definition 

Let V be an operator space and W be a closed subspace of V. Then the inclusion 

n nM (W) M (V)   and the corresponding relative norms on V determine an operator space 

matrix norm on W.  

By using the identification 

  n n nM (V / W) M (V) / M (W) to define a norm on 
nM (V / W).  

 If q : V V / W  is the quotient mapping, then for each n   we define   

n n nq : M (V) M (V / W)  with norm 

   nv inf v : v M (V),(V) v ,    for all nv M (V / W).   

 

Proposition 

 If W is a closed subspace of an operator space V, then V / W  is an operator space. 

Proof 

 Given n,m m,nM , M   and mv M (V / W),  there exists a mv M (V)  such that 

  mq (v) v  and v v .     

It follows that nq (  v )  v ,      and thus  

   v  v        

   v    

   ( v ) .       

Since 0   is arbitrary, we obtain 1(R ).   

 On the other hand, given mw M (V / W)  and an element nw M (V)  with nq (w) w  

and w w ,    it follows that m nq (v w) v w,     and thus  

   v w v w max v , w      

  max v , w .     

Again since 0   is arbitrary, we obtain 2(R ).   

By Ruan Theorem, V / W  is an operator space. 
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Duality of Operator Spaces 

 In this section, we discuss the duality of operator space. Firstly, we present the mapping 

space which is important concept for study of operator space dual.  

 

Definition  

 Let V and W be operator spaces. Then the space of all completely bounded maps from 

V into W is denoted by CB(V,W).   

Each matrix  
ij nM (CB(V,W))        

determines a mapping   

n: V M (W)    

by letting 
ij( ) (v) ,       for v V.   

 

Proposition 

 Let V and W be operator spaces. Then the space CB(V,W)  is an operator space. 

Proof 

 We use the linear identification 

  n nM (CB(V,W) CB(V,M (W)),  and the completely bounded norm on the 

second space to define a norm on nM (CB(V,W)).   

Then the equation 

   n nM (CB(V,W) CB(V,M (W))  holds completely isometrically. 

By Ruan Theorem, CB(V,W)  is an operator space. 

 

Definition 

 Let V be an operator space. The operator space dual of V is defined as 

V* CB(V, ).   

 Each matrix ij nf f M (V*)     determines a linear mapping nf : V M ,  where 

ijf (v) f (v) .      

 This gives us a linear isomorphism 

  n nM (V*) CB(V,M ).   

 The completely bounded norm on the second space defines a norm on nM (V*).   
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Thus we have the isometric identification 

  n nM (V*) CB(V,M ).   

 For given nf M (V*),  we have  

   n nf sup f (v) : v M (V),  v 1         (1) 

and for nv M (V),   

   n n cb
v sup f (v) : f CB(V,M ),  f 1 .        (2) 

Definition 

 An operator space W is said to be a dual operator space if W is completely 

isometrically isomorphic to the operator space dual V*  of an operator space V. 

Proposition 

 If V is an operator space, then its dual space V*  is an operator space. 

Proof 

 We suppose that  

  m n,mf M (V*),  M   and m,nM .   

Then   r r r r(α f β) ( I )f ( I )     

   r r rI f I     

   
cb

f    

and hence          
cb cb

α f β f .    

Then we have 1(R ).   

On the other hand, given 

  m nf M (V*),  g M (V*)   and rv M (V)  with v 1.   

  r ij ij(f g) (v) f (v ) g(v )       

  r rf (v) g (v)    

   r rmax f (v) , g (v)   

   cb cb
max f , g   

and hence  cb cb cb
f g max f , g .    

Then we have 2(R ).   
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By Ruans Theorem, V*  is an operator space. 

Definition 

 Given an operator space V, we define the canonical inclusion vi : V V**  by 

  vi (v),f f ,v ,   

where V**  is the dual operator space of V*.   

Proposition 

 For any operator space V, the canonical inclusion 

  vi : V V**   

is completely isometric. 

Proof 

 For any nv M (V)  and nf M (V*),   v n n v ij kl kl ij(i ) (v) (f ) i (v )(f ) f (v ) .          

It follows from equation (1) and (2) of the definition of operator space dual that  

   v n kl ij n(i ) (v) sup f (v ) : v M (v),  v 1     

  v n n n cb
sup (i ) (v) (f ) : f CB(V,M ),  f 1     

 v .   

Thus v n(i )  is isometric for each n. 

Therefore vi  is a complete isometry. 

Proposition 

 Given operator spaces V and W, if : V W   is a completely bounded mapping, then 

the adjoint mapping *  is a completely bounded from W* to V*  with nn
* ,     

for all n   and 
cb cb

* .     

Proof 

 Given for any nv M (V)  and mg M (W*),  we have  

   n n( *) sup ( *) (g),v     

    nsup g, (v)    

   n ,    

where the supremum is the taken over all ng M (V*)  and nv M (V) of norm 1.   
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Consequently, we have 
cb cb

* .     

 From the above Proposition, we immediately have the following Corollary. 

Corollary 

 Given operator spaces V and W, and a completely bounded mapping : V W,   then 

the completely bounded mapping *: W* V*   is a complete isometry. That is,  

*:CB(V,W) CB(W*,V*)   is a complete isometry. 

Definition  

Let V be operator space and W be a closed subspace of V. If V*  is the dual operator 

space, then  W f V*: f (v) 0,  for all v W      is called annihilator of W. 

Proposition(Duality of subspaces and quotients) 

 If W is a closed subspace of an operator space V, then we have the complete isometries  

  (V / W)* W  and W* V*/W ,   

where W  is the annihilator of W. 

Proof 

 The dual of the inclusion map i : W V  will be a complete quotient map 

i*: V* W*,  which induces a complete isometry 

  W* V*/Ker(i*) V*/W .    

Similarly, the dual of the canonical quotient map q : V V / W  is the canonical complete 

isometry q*: (V / W)* V*.   
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Characterization of Atomic Decompositions, Banach Frames and  

Xd-frames in Banach Spaces 

 

Moe Sandar

 

 

Abstract  

 This paper is mainly concerned with the atomic decompositions, Banach frames and 

Xd- frames. 

\ 

1 Related concepts of atomic decompositions and Banach frames 

  Throughout this paper, X and Y denote  Banach spaces, X  denotes the dual of 

X,  Xd denotes a Banach space of scalar valued sequences  unless otherwise stated.  

1.1 Definition:  

A Banach space Xd is called BK-space if the coordinate functionals are continuous. 

1.2 Definitions  

Let X be a Banach space, Xd be a BK-space and let  i i=1
y


be the sequence of 

vectors of  X  and  i i=1
x


 be the sequence of vectors of X.  The ordered pair  

    i ii=1 i=1
y , x

 
is  called an atomic decomposition  of  X with respect to Xd  if 

( i )  i di=1
x, y X ,



 for each x X,  

( ii ) There exist two constants 0 < A B <   such that  

 
d

i i=1
A x x, y B x ,

X XX



   for each x X,  

( iii )  
i i

i 1

x x, y x ,




  for each x X.  

The constants A and B are called atomic bounds  for     i ii=1 i=1
y , x .

 
  

1.3  Definitions 

Let X be a Banach space, Xd be a BK-space and let   i i=1
y


be the sequence of 

vectors of  X . The sequence    i i=1
y ,S


is   called a Banach frame for X with respect to Xd  if 

                                                 
 Dr, Lecturer, Department of  Mathematics, Banmaw University 
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( i )  i di=1
x, y X ,



 for each x X,  

( ii ) There exist two constants 0 < A B <   such that  

 
d

i i=1
A x x, y B x ,

X XX



   for each x X,  

 

 ( iii ) There exists bounded linear operator 
dS: X X so that  

 i i=1
S x, y x,



  for each x X.  

It turns out that there is a natural relationship between atomic decomposition and  

Banach frame. Namely, a Banach frame is an atomic decomposition if and only if the unit 

vectors form a basis for the space Xd .  

1.4   Definition 

  An ordered sequence  i i=1
x


 in a Banach space X is called a Schauder basis for X if for 

each x in X there is a unique sequence   i i=1



of  scalars such that  

i i

i 1

x x .




  

1.5 Proposition: Let X be a Banach space, Xd be a BK-space and let   i i=1
y


be  the 

sequence of vectors from X  and dS: X X
  
 be given. Let  i i=1

e


be the unit  

vectors in   Xd . Then, the following conditions are equivalent: 

( i )   i i=1
y ,S


is a Banach frame for X with respect to Xd and  i i=1

e


is a Schauder basis for 

Xd .  

( ii )     i ii=1 i=1
y ,S e

 
is an atomic decomposition of  X with respect to Xd .  

Proof:   i (ii) : Assume ( i ) holds. We have 

( i )  i di=1
x, y X ,



 for each x X.  

( ii ) There exist two constants 0 < A B <   such that  

 
d

i i=1
A x x, y B x ,

X XX



   for each x X.  

 ( iii ) There exists bounded linear operator dS: X X so that  

 i i=1
S x, y x,



  for each x X.   
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Moreover,  i i=1
e


is a Schauder basis for Xd , it follows that there exists a unique  

sequence  i i=1



of scalars such that 

 i i ii 1
i 1

e . 







 . 

Let 
i ix Se X,  for each i.  

For     i ii=1 i=1
y ,S e

 
is an atomic decomposition of X with respect to Xd , it suffices to 

show    

i i

i 1

x x, y x




  , for each x X.  

 

It follows easily  that  ix S x, y  

   i i

i 1

S x, y e




   

     
i i

i 1

x, y Se





 

  
i i

i 1

x, y x




 ,for each x X.  

 ii (i) : Assume that (ii) holds. We have 

( i )  i di=1
x, y X ,



 for each x X.  

( ii ) There exist two constants 0 < A B <   such that  

 
d

i i=1
A x x, y B x ,

X XX



   for each x X.  

 ( iii ) 
i i

i 1

x x, y x ,




  for each x X.  

For   i i=1
y ,S


is a Banach frame for X with respect to Xd , it suffices to prove 

dS: X X is bounded and linear. 

Let dS: X X
 
be given by  i i=1

S x, y x,


 . We shall clearly see that S is a  

bounded and linear. 
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For all scalars ,  and for all x,z X, we have 

   i i i iS x,y z,y S x,y z,y       

                                     iS x z, y    

   x z  

  

 

                                    
   i iS x, y S z, y     

and    i iS x, y x x, y ,XX X
d

  for each x X.  

Now   i i=1
y ,S


is a Banach frame for X with respect to Xd with frame bounds A= B= 1. 

We have only to prove that  i i=1
e


is a Schauder basis for Xd. It is easily seen that 

 i i ii=1
i 1

S x, y x x, y x ,






  for each x X.  

             i i

i 1

x, y Se




    
 

  i i

i 1

S x, y e .




   
 

 

Banach frames are quite general. In fact, every Banach space has a Banach frame 

defined on it as the next result shows.   

1.6 Proposition: Every separable Banach space has a Banach frame with frame  

bounds A= B= 1. 

Proof:  Let X be a separable Banach space. By Hahn- Banach Theorem, we 

can choose a sequence  i i 1
y X

 


 with 

iy 1 . And so that for every x X.  , we have  

ix sup y (x) .  

That is, 
ix x, y ,

X
d

 for each x X.  

Let  Xd be a subspace of   given by 

  d iX x, y : x X .   

That is,  i dx, y X , for each x X.  

Let dS: X X be given by  
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 i i=1
S x, y x,



 for each x X.  

 We see  that S is linear and bounded as in the proof of Proposition 1.5.  

Therefore ,
 
  i i=1
y ,S


is a Banach frame for X with respect to Xd with frame bounds  

A= B= 1.        

 

2 Related concepts of Banach frames and Xd-frames 

Generalizations of frames to Banach spaces are the so called Banach frames and 

 Xd- frames.  

2.1  Definitions 

Let X be a Banach space, Xd be a BK-space and let   i i=1
y


be the sequence of 

vectors of  X . The sequence   i i=1
y


is   called a Xd-frame for X   if 

( i )  i di=1
x, y X ,



 for each x X,  

( ii ) There exist two constants 0 < A B <   such that  

 
d

i i=1
A x x, y B x ,

X XX



   for each x X,  

The constants A and B are called the lower and upper Xd-frame bounds respectively. 

   

If at least ( i ) and the upper condition in  inequality from ( ii ) are satisfied , the 

sequence   i i=1
y


is   called an Xd - Bessel sequence for X with  bound B. 

 

We first characterize the Banach space X which has an Xd-frame with respect to a 

given BK-space Xd. 

 

2.2 Theorem 

  Let X be a Banach space and Xd be a BK-space. Then, there exists an  

Xd-frame for X if and only if X is isomorphic to a subspace of  Xd. 

 

Proof:  From the definition of Xd-frame,  if   i i=1
y


 is an Xd-frame for a Banach 

space X, then the mapping dU : X X   given by   i i=1
U(x) x, y ,



  for each x X  is 
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an isomorphism of  X into Xd . 

Conversely , let X be a subspace of  Xd and  i i=1
x


 be the coordinate functionals 

 ( which are assumed to be continuous). Let  i iy x | .
X

  

Then for each x X ,  

( i )  i di=1
x, y x X



  and  

( ii )  
d

i i=1
x x, y .X X



    

Given an Xd-frame   i i=1
y


, where Xd is a BK- space for which the canonical unit 

vectors form a basis, the next result clarifies which extra condition we need in order to ensure 

that  i i=1
y


is a Banach frame. 

 

2.3 Definitions 

  A closed linear subspace Y of a Banach space X is said to be complemented  

subspace of  X if there is a bounded linear projection from X onto Y. 

In other words, Y is said to be a complemented subspace of X if there exists a 

 closed subspace Z of X so that X is a direct sum of Y and Z.  

 

2.4 Proposition 

  Suppose that  Xd is  a BK-space,  i i=1
y


be  the sequence of vectors from X

 and  

Xd-frame for X. If the canonical unit vectors  i i=1
e


 form a basis for Xd, then the 

following conditions are equivalent: 

 ( i ) Range R(U) of the operator U is complemented in Xd . 

 ( ii ) There exists bounded linear operator S such that   i i=1
y ,S


 is a Banach frame for X 

with respect to  Xd . 

 ( iii ) There exists an dX - Bessel sequence  i i=1
x X X

   for  X such that  

i i

i 1

x x,y x




    , for each x X.  

 A reformulation of Proposition 2.4 gives a characterization of spaces X possessing  

Banach frames. 
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2.5 Theorem 

  A Banach space X has a Banach frame with respect to a sequence space Xd if and  

only if X is isomorphic to a complemented supspace of Xd.  

Proof:  Suppose that X has a Banach frame with respect to Xd . Then, there exists a 

bounded linear operator S such that   i i=1
y ,S


 is a Banach frame for X with respect to  

Xd. From the definition of Xd-frame, if   i i=1
y


 is an Xd-frame for a Banach space X, then  

the mapping 
dU : X X   given by   

 i i i 1i=1
U(x) x, y (y (x)) ,

 

   for each x X   

is an isomorphism of  X into Xd . 

From this ,  

1U : R(U) X   

is continuous on R( U ). Then, 1U can be extended to a bounded linear operator  

dV : X X.
 

Consider the bounded operator 

dP : X R(U)
 

defined by P = UV. 

We get  2P P by using  

VU = I (on X). 

For every x X,  

Ux = UVUx = P(Ux) R(P).  

Hence,  R(U) = R(P). 

That is, the range of U equals to the range of bounded projection. Thus, R(U) is complemented. 

 

 

Conversely, suppose that X is isomorphic to a complemented subspace of Xd. Then, we 

will show how a Banach space can be constructed.  

Let dT : X X be an isomorphism and let dP : X R(T) be a projection of Xd onto R(T). 

Define dS: X X by 
1Sx T Px  . Let  i i=1

e


be the coordinate functionals of Xd and 

i iy = T e .  

For each x X,  
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i i iy (x) = T e (x) e (Tx).   

Hence, 
iT(x) (y (x)).  

Since T is an isomorphism, it follows that   i i=1
y ,S


 is a Banach frame for X 

with respect to  Xd .    
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Some Applications of Eigenvalues and Eigenvectors 
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Abstract 

In this paper, firstly the basic concepts
 
of matrices and determinants are introduced. And then, 

the important facts of the eigenvalues and eigenvectors are presented. Finally, some applications 

of eigenvalues and eigenvectors are described. 

 

Introduction 

 The eigenvalues problems are the most important problems that link with matrix 

analysis. We shall see that eigenvalues and eigenvectors are associated with square matrix. 

Many applications involve the use of eigenvalues and vectors in the process of transforming a 

given matrix into a diagonal matrix. As the last, the calculation of the model population growth 

and finding a stable age distribution vector are expressed. 

 

Learning Outcomes 

 On completion we should be able to obtain the eigenvalues and eigenvectors of 2 2  

and 3 3  matrices. We should be able to diagonalize a matrix with distinct eigenvalues using 

the model matrix. We consider the model population growth by using an transition matrix and 

an age distribution vector. Also we state the quadratic forms to know the rotation of conic. 

 

The Basic concepts of Matrices and Determinants 

 A matrix is simply a set of numbers arranged in a rectangle array. Then the array 

enclosed by round (   ) or square [ ] bracket. 

2 4 1 0
A

1 3 7 2
  is a 2 4  matrix. 

It has 2 rows and 4 columns. 

A matrix with the same numbers of rows and columns is called a square matrix. 

For examples,   

1 2 3
2 1

P and Q 4 1 5
0 2

2 3 3

 are the square matrix of order 2 and 3. 

 

                                                 
1 Lecturer, Department of Mathematics, Banmaw University 

2 Dr, Associate Professor, Department of Mathematics, Banmaw University 

3 Assistant Lecturer, Department of Mathematics, Banmaw University 
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A square matrix is a diagonal matrix if nondiagonal entries are all zeros. The main 

diagonal entries can be constants or zeros.  

For examples,  

2 0 0
1 0

C and D 0 1 0
0 2

0 0 0

 are diagonals matrices. 

 A diagonal matrix whose diagonal entries are all equal is called a scalar matrix. 

For examples,  

32 0 0 0
2

A 0 2 0 and B
3

00 0 2
2

 are scalar matrices. 

1 0 0
1 0

I and I 0 1 0
0 1

0 0 1

 are the unit matrix of dimension 2 and 3. 

A square matrix possess an associated determinant. A determinant has a single value. 

A 2 2  matrix 
11 12

21 22

a a
A

a a
 has an associated determinant  

11 12

21 22

a a
det A

a a
 

  11 22 21 12a a a a .  

 

A 3 3  matrix 

11 12 13

21 22 23

31 32 33

b b b

B b b b

b b b

 has an associated determinant, 

11 12 13

21 22 23

31 32 33

b b b

det B b b b .

b b b

 

This determinant can be calculated by “an expansion about the top 

row”.
22 23 21 23 21 22

11 12 13

32 33 31 33 31 32

b b b b b b
det B b b b .

b b b b b b
 

 

Eigenvalues and Eigenvectors 

 An eigenvalue of a square matrix A is a scalar  such that AX X  has a solution  

X 0.  The vector X is called an eigenvector of A corresponding to that eigenvalue .  

To find the eigenvalue we use the characteristic equations of A, that is, 

det ( I A) 0.  Also we can find the corresponding eigenvectors by solving the equation 

( I A)X 0  for the vector X, where I is a unit matrix the same dimensions as A. 
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 Example 

 We can find the eigenvalues and eigenvectors of the matrix 
1 0

A .
1 2

 

From the equation 
x

( I A)X 0 and X ,
y

 

we use the characteristic equation, 

    det ( I A) 0,  

1 0 1 0
det 0.

0 1 1 2
 

   

1 0
0.

1 2
 

By expanding this determinant, 

( 1)( 2) 0.  

Hence the eigenvalues are 1 and 2.  

So we have found two values of    for this 2 2  matrix A. 

Since the values are unequal, the eigenvectors are also distinct.  

 To each value of  is the corresponding of an eigenvector. We now preceed to find the 

eigenvectors. 

Case1: 

 If  1,  then our original eigenvalue problem becomes AX X.  

So          x x  

 x 2y y.  

   x y 0.  

Then   x y y x.  

Thus 
x

X
x

  for any x 0.  

So the eigenvectors corresponding to eigenvalue 1  are proportional to 
1

.
1

 

The normalized eigenvector of X  is  
11

.
12
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Case 2: 

 For the larger eigenvalue 2,  our original eigenvalue problem becomes AX 2X  

which gives the following equations    

        x 2x  

 x 2y 2y.  

These equations imply that x 0  and the variable y may take any value (except zero). 

Thus the eigenvector corresponding to eigenvalue 2  has the form 
0

.
y

 

The normalized eigenvector of X is 
0

.
1

 

Therefore the matrix 
1 0

A
1 2

 has two eigenvalues 1 21, 2 and  

two associated normalized eigenvectors 

1 2

1 01
X , X .

1 12
 

 

Some Applications of Eigenvalues and Eigenvectors 

Population Growth 

 Matrices can be used to form model for population growth. The first step is to combine 

the population into age classes of equal duration. 

 Particularly, if the greatest life term of a number is L years, then the following n 

intervals perform the age classes. 

L
0,

n
     first age class 

L 2L
,

n n
    second age class 

: 

: 

: 

(n 1)L
, L

n    

 n
th

 age class 
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The age distribution vector X represents the number of population members in each age class, 

where 

1

2

n

x

x
X

x

st
Number in 1 class

nd
Number in 2 class

th
Number in n class

 

Over a period of 
L

n
 years, the probability that a member of  i

th
 age class will remain to 

become a member of the (i+1)
th

 age class is given by ip ,  where i0 p 1, i 1,2,...,n 1.  

The average member of generation produced by a member of the i
th

 age class is given by bi 

,where i0 b , i 1,2,...,n 1.  

 These numbers can be written in matrix form 

   

1 2 3 n 1 n

1

2

n 1

b b b . . . b b

p 0 0 . . . 0 0

0 p 0 . . . 0 0
A .

:

:

0 0 0 . . . p 0

 

 

Multiplying this age transition matrix by the age distribution vector for a specific time 

period produces the age distribution vector for the next time period, that is, i i 1Ax x .  

 

Example 

 A population of rabbits has the following characteristics. 

(i) Half of the rabbits survive their first year. Of those, half survive their second year.  

    The greatest life term is 3 years. 

(ii) During the first year, the rabbits produce no offspring. The average number of offspring 

      is 6 during the second year and 8 during the third year. 

 The population now consists 24 rabbits in the first age class, 24 in the second and 20 in 

the third. We can compute the number of rabbits will be there in each age class in 1 year. 

 The current age distribution vector is 
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1

24

x 24

20

0 age < 1

1 age < 2

2 age < 3

 

and the age transition matrix is 

0 6 8

A 0.5 0 0 .

0 0.5 0

 

After 1 year, the age distribution vector will be  

2 1

0 6 8 24 304

x Ax 0.5 0 0 24 12 .

0 0.5 0 20 12

0 age < 1

1 age < 2

2 age < 3

 

 

 Example  

To find a stable age distribution vector for the population in above example. 

By using the characteristics equation is I A 0,  

      
2( 1) ( 2) 0. 

Therefore 1 or 2.  

Choosing the positive value 2,  then our original eigenvalue problem becomes 

AX 2X.  

Then    2 3 16x 8x 2x  

 1 20.5x 2x  

2 30.5x 2x .  

The corresponding  eigenvectors are of the form  

1

2

3

x 16t 16

X x 4t t 4 .

x t 1

 

For instance, if t 2,   then the initial age distribution vector would be  

1

32

X 8

2

0 age < 1

1 age < 2

2 age < 3

 

and the age distribution vector for the next year would be 
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2 1

0 6 8 32 64

X AX 0.5 0 0 8 16

0 0.5 0 2 4

0 age < 1

1 age < 2

2 age < 3

 

 The ratio of the three age classes is still 16:4:1 and so the percent of the population in 

each age class remain the same. 

Quadratic Form 

 Eigenvalues and eigenvectors can be used to solve the rotation of axes problem. By 

classifying the graph of the quadratic equation 

2 2ax bxy cy d x ey f 0.        (1) 

 The graph is fairly straightforward as long as the equation has no xy-term,  

that is, b 0.  

 If the equation has an xy-term, then the classification is accomplished most easily by 

first performing a rotation of axes the eliminate the xy-term. 

The resulting equation will be of the form    

2 2a (x ) c (y ) d x e y f 0.  

The coefficients a and c  are the eigenvalues of the matrix 

b
a

2
a .

b
c

2

 

The expression 2 2ax bxy cy  is called the quadratic form associated with the 

equation (1) and the matrix A is called the matrix of the quadratic from. Moreover, the matrix 

A will be diagonal if and only if its corresponding quadratic form has no xy-term. 

 

Example 

We find the matrix of a quadratic form associated with  

2 2(i) 4x 9y 36 0,  2 2(ii) 13x 10xy 13y 72 0.  

(i) Since a 4,b 0 and c 9,  the matrix is  

4 0
A

0 9
   Diagonal matrix (no xy-term) 

(ii) Since a 13,b 10 and c 13,  the matrix is  

13 5
B

5 13
 Nondiagonal matrix (xy-term). 
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In standard form, the equation  2 24x 9y 36 0  is 

2 2

2 2

x y
1

3 2
 

which is the equation of the ellipse shown in figure 1. 

 

 

 

 

 

  

 

 

The graph of the equation 2 213x 10xy 13y 72 0.  is similar. Infact when you 

rotate the x and y axes counterclockwise 45  to form a new x y -coordinate system, the 

equation forms 
2 2

2 2

(x ) (y )
1

3 2
 which is the equation of the ellipse shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Principal Axes Theorem 

 For a conic whose is 2 2ax bxy cy dx ey f 0,  the rotation given by 

X PX  eliminates the xy-term when P is an orthogonal matrix, p 1 , with that 

2 

-2 
-3 -3 

x 

y 

Figure  1 

x
/ 

x 

y 

y
 / 

-3 -2 -1 

-2 

-1 

1 

2 

1 2 3 

Figure 2 



Banmaw University Research Journal 2020, Vol. 11, No.1 

 
224 

diagonalizes A. The matrix P is the form 
cos sin

P
sin cos

 where a gives the angles of 

rotation of the conic measured from x axis  the positive to the positive x axis.  

That is 
1T

2

0
P AP ,

0
  where 

1
 and 2  are eigenvalues of A. 

The equation of the rotated conic is given by 

2 2

1 2(x ) (y ) d e PX f 0.
 

 

Example 

 We perform a rotation of axes to eliminate the xy-term in the quadratic equation  
2 213x 10xy 13y 72 0.  

The matrix of the quadratic form is  
13 5

A .
5 13

 

By using the characteristic equation is  I A 0,  

     ( 8)( 18) 0. 

The eigenvalues of A are 1 28 and 18.  

So the equation of the rotated conic is  2 28(x ) 18(y ) 72 0.  

The standard form  
2 2

2 2

(x ) (y )
1

3 2
 is the equation of an ellipse. 

 

Example 

We can perform a rotation to eliminate the xy-term in 
2 23x 10xy 3y 16 2 x 32 0.  

The matrix of the quadratic form is 
3 5

A .
5 3

 

The eigenvalues of A are 1 28 and 2  with corresponding eigenvectors of  

1 2x ( 1,1) and x ( 1, 1).  
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This implies that the matrix P is  

        

1 1

2 2
P ,

1 1

2 2

   where  P 1. 

The angle of rotation is 135 . 

Then    

1 1

x2 2
[d e]PX [16 2 0]

1 1 y

2 2

 

     16x 16y . 

The equation of the rotated conic is 

2 28(x ) 2(y ) 16x 16y 32 0.  

In standard form, the equation 

2 2

2 2

(x 1) (y 4)
1

1 2
  is the equation of a hyperbolic.  

It graph is shown in figure 3. 
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